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Abstract 
 
Rock stiffness is important in design as it affects the stresses and deformation around openings. 

Many rocks are anisotropic and those of sedimentary origin are frequently highly nonlinearly elastic. 
Traditionally elastic properties are inadequately measured using uniaxial test methods. This paper 
examines the results of uniaxial, triaxial and hydrostatic testing for the elastic behaviour of rock based 
on the assumption of orthotropic behaviour. The effects of fluid pressure on effective stress are also 
discussed. The mathematics are presented for each case. The testing methods involve step-wise loading 
of triaxial or hydrostatic samples that are fitted with strain gauges. The effects of fluids on deformation 
are determined by gas injection. The simple hydrostatic test process enables rock fragments to be tested 
to determine their anisotropy. This however requires an estimation of at least one of the values of 
Poisson’s ratio.  
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Introduction 
Rocks are complex composites of different minerals. As a consequence their mechanical properties 

are highly variable. This variability extends through varying elastic to post elastic behaviour.  
For a general elastic solid there are six stresses and six engineering strains which are linked by either 

a compliance (Equation 1) or stiffness matrix, each with 36 terms. Because of the symmetry of these 
matrixes the number of terms may be reduced to 21. Practically this is still a very large number of 
parameters to determine from a physical test on a piece of rock, particularly as this piece of rock is 
frequently a cylindrical core or more conveniently a fragment.  

 
                                                               {𝜀𝑖𝑗} = [𝐶𝑖𝑗𝑘𝑙]{𝜎𝑘𝑙}                                                          (1) 
 
The general formulation of Equation 1 means that quite complex effects can be accounted for. For 

example a normal stress to a plane may cause a shear strain in that same plane. More realistically shear 
stress acting on a plane may lead to strain (dilation or compaction) perpendicular to the plane. 

If we make the convenient, but not necessarily correct, approximation that the rock behaves in an 
orthotropic manner, then the number of independent terms in the compliance matrix drops from 21 to 
nine (allowing for symmetry) as shown in Equation 2. Three of these are shear terms that are difficult 
to measure directly, but may be estimated. The orthotropic approach does however mean that the options 
such as dilation or compaction perpendicular to the plane on which shearing acts are assumed to be 
zero.  

Practically the application of tractions to a rock sample surface is difficult to achieve. Rock may 
only be conveniently loaded perpendicularly to its surfaces. A core may therefore have differing axial 
and radial (confining) loading. The combination of these two leads to a subset of the true triaxial loading 
situation with equal stress being applied to the core sides, perpendicular to the core axis. This constitutes 
the normal triaxial loading that is available for rock core in a laboratory. The uniaxial test is a further 
subset of this but without any radial loading.  

A non-uniform fragment of rock may be practically loaded by point loading, with an associated 
complex, and unanalysable, stress distribution. Alternatively it may be loaded by hydrostatic pressure, 
which produces an even stress distribution. These practical restrictions on testing mean that the number 
of parameters that may be adjusted is limited. The measurements that can be made are also limited to 
deformation of the surface of the rock sample being tested. The best measurements are made using 
strain gauges located on the surface of the sample.  
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If we obtain core with an axis which is in the same direction as one of the principal axes of 

orthogonality then we have further simplified the problem of determining material properties.  
Such core would typically be drilled perpendicularly to the bedding plane of a sedimentary rock, or 

to the laminations of a schist. If the core axis corresponds to the 1 axis of Equation 2 then it can be 
loaded in this direction using the axial loading platens and without any shear stresses acting on the 
contact surface. The radial or confining stress loading is symmetric about the 1 axis and thus no shear 
stresses are generated on any plane that is perpendicular to it. This means that all of the shear stress 
terms on the right hand side of Equation 2 disappear. By determining the principal strains in the 2-3 
plane any shear strains also disappear. This means that for practical purposes the compliance matrix of 
Equation 2 is reduced to a symmetric 3×3 matrix with six unknowns. 

To solve the components of the compliance matrix in a cylindrical triaxial test there are two load 
change steps (axial and radial) that can be made. Associated with these are three principal strains, albeit 
we have assumed that one of these principal strains is in the axis of the core and the others are 
perpendicular to this. This is an inadequate number from which to derive a solution and a further 
assumption must be made to obtain a solution.  

If we consider the hydrostatic loading case then we only have a single loading change available and 
therefore two assumptions must be made to solve the six unknowns of the compliance matrix. 

In addition to the effects of external stress on the deformation of a rock sample there are also the 
effects of internal fluid pressure to consider. These poroelastic effects can be measured.  

 
1. Solutions for the components of the compliance matrix in terms of 𝑬𝒊 and 𝒗𝒊𝒋 

To be able determine rock properties it is necessary to measure both stress and associated strain 
change at a variety of stress states.  

An important component of a solution to the orthogonal case comes from symmetry of the 
compliance matrix. This means that there is a relationship between Poisson’s ratios and the Young’s 
moduli given in Equation 3. 

                                                                           
𝑣𝑖𝑗

𝐸𝑖
=

𝑣𝑗𝑖

𝐸𝑗
                       (3) 

Another key assumption that must be used is that a geometric mean Poisson’s ratio exists as given 
in Equation 4 in which 𝑣𝑎 is assumed to be common for all values of i and j.  

                                                                          𝑣𝑖𝑗𝑣𝑗𝑖 = 𝑣𝑎
2                   (4) 

 
A consequence of Equations 3 and 4 is Equation 5. 

                                                                         𝑣𝑗𝑖 = √
𝐸𝑗

𝐸𝑖
𝑣𝑎                   (5) 

1.1 Cylindrical triaxial case 
In the case of triaxially loaded core two loading options exist: one for loading the core axially and 

one for loading the core radially. Both axial strain and circumferential strain may be monitored by strain 
gauges. The axial Young’s modulus, 𝐸1, may be directly determined by the change in axial strain 
associated with a change in axial stress. By measuring the circumferential strains at three points on the 
circumference of the sample it is possible to calculate the principal strains in the plane perpendicular to 
the core (2-3) and from this the values of Poisson’s ratio associated with this loading,  𝑣12 and 𝑣13. 
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Determining the other values of Young’s moduli and Poisson’s ratios is more complex because the 
cylinder is loaded radially. Equation 6 is the basic equation for strain brought about by principal stresses 
in an orthogonal system.  

                                                       ∆𝜀𝑖𝑖 =
1

𝐸𝑖
∆𝜎𝑖𝑖 −

𝑣𝑗𝑖

𝐸𝑗
∆𝜎𝑗𝑗 −

𝑣𝑘𝑖

𝐸𝑘
∆𝜎𝑘𝑘      (6) 

Using the relationship of Equation 3 it may be rewritten as Equation 7. 

                                                      𝐸𝑖 =
1

∆𝜀𝑖𝑖
(∆𝜎𝑖𝑖 − 𝑣𝑖𝑗∆𝜎𝑗𝑖 − 𝑣𝑖𝑘∆𝜎𝑘𝑘)    (7) 

Further using the Equation 5 and Equation 7 it may be re-written in residual as Equation 8. 

                  𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑓𝑛(𝐸𝑖) =
1

∆𝜀𝑖𝑖
(∆𝜎𝑖𝑖 −√

𝐸𝑖

𝐸𝑗
𝑣𝑎∆𝜎𝑗𝑗 −√

𝐸𝑖

𝐸𝑘
𝑣𝑎∆𝜎𝑘𝑘) − 𝐸𝑖               (8) 

Equation 8 represents three nonlinear equations for the Young’s moduli, 𝐸𝑖, using an unknown 
geometric mean value of Poisson’s ratio, 𝑣𝑎. However the geometric mean Poisson’s ratio may be 
deduced by solving these equations to arrive at the best fit to the directly measured value of 𝐸1using an 
axial load change at the appropriate stress level. The authors have used a Newton-Raphson approach to 
obtain the best solution to the experimental data from each change of stress.  

 
1.2 The hydrostatic case 

In the case of hydrostatic loading there is no direct measurement of E1 or any other value of Young’s 
modulus or Poisson’s ratio,  and the value of the geometric mean Poisson’s ratio, 𝑣𝑎, must be estimated. 
If this is done then the solutions for 𝐸𝑖 are obtained by solving Equation 8, but using a single hydrostatic 
value of stress change rather than the three individual stress values. Using the estimated value of 𝑣𝑎it is 
possible to calculate the individual values of Poisson’s ratios using Equation 5.  

 
1.3 The measurement of poroelastic behaviour 

Rock which contains interconnected void space will change its dimension to some degree with 
changing fluid pressure. How the rock deforms is a function of its elastic properties, the fluid pressure 
change and the poroelastic parameters. The basis for measuring the poroelastic parameters is presented 
in Equation 9, taken from Gray, 2017.  
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   (9) 

 
The elastic parameters, 𝐸𝑖 and 𝑣𝑖𝑗 are normally solved by a regime of varied axial and radial loading 

on a core. During this test cycle fluid pressure is increased, the associated strains measured, and then 
the fluid is drained off. The poroelastic parameter tensor, 𝛼i, may be deduced from the strain changes 
associated with the fluid pressure change.    

 
 

1.4 The shear stiffness terms 
Determining the shear moduli, 𝐺𝑖𝑗, in Equation 2 is not easy because of the loading limitations on 

core and rock fragments. Huber (1923) took the approach shown in Equation 10 for this purpose.  
 
     

                                                                 𝐺𝑖𝑗 =
√𝐸𝑖𝐸𝑗

2(1+√𝜈𝑖𝑗𝜈𝑗𝑖)
                                     (10) 
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2. Experimental procedures 
Three experimental procedures are considered here. They are triaxial loading, usually with fluid 

pressurisation, Hydrostatic loading, usually without fluid pressurisation, and uniaxial testing. The latter 
is included as it is so often regarded as the benchmark for the determination of rock properties.  

 
2.1 Triaxial testing of cylindrical core 

The triaxial testing of core involves preparing the sample with flat parallel ends and with plaster 
filling of the core periphery wherever the surface roughness would cause problems for strain gauge 
adherence or lead to squeezing of the gauge foil into pores. Three strain gauge rosettes are then adhered 
at 120o separations around the periphery of the core. The core is then fitted into the triaxial test rig and 
the strain gauges are electrically coupled. A core sample is shown in this position in Figure 1. An 
elastomeric sleeve is then fitted over the sample and the cell is then closed ready for loading. The load 
is applied in a sequence of steps over a number of cycles.  

 

 

Figure 1. Showing a fine grained silty sandstone core fitted with strain gauge rosettes within the 
triaxial cell prior to the sleeve being fitted  

 
The first cycle involves a step increase in axial load followed by a step increase in radial loading to 

a fraction (typically 90%) of the axial load. This process is repeated with multiple loading increments. 
The system is then unloaded and a second cycle is then repeated but with the radial loading fraction at 
a lower value (typically 75%) of the axial load change. Additional loading cycles are undertaken with 
reduced radial to axial loading fractions (typically 50% and 25%). Finally a uniaxial loading cycle is 
performed. 

The reason for starting with a loading regime where the radial load is close to the axial load is to 
minimise the potential for shear failure to occur early in the test process. As the test cycles proceed the 
potential for shear failure to occur increases.  

The determination of poroelastic behaviour involves the pressurisation of the sample with gas. The 
gas usually used is nitrogen though helium is preferable where there is a risk of adsorbing gas into the 
rock material. The pressure used must be less than the radial (confining) pressure so that the gas does 
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not cause the elastomeric sleeve to be lifted. It is also kept at as low a pressure as is compatible with 
obtaining a satisfactory strain reading. Sometimes the gas injection must be maintained for a significant 
period to ensure permeation through the sample. By monitoring the strain gauges it is possible to 
determine when the strain change has stopped occurring.  

Figure 2 shows a typical loading cycle for a triaxial test.  
 

 
Figure 2. Example of the first cycle of stepwise axial pressure (AP) and confining pressure (CP) in 

kPa changes and the resulting strains in microstrain. 
 

2.2 Hydrostatic testing of rock fragments 
It is frequently impossible to obtain a suitable sample of a rock to be tested triaxially, and testing 

must be undertaken on a fragment. This fragment should be fitted with strain gauge rosettes. It is 
convenient to orient these so that they match any particular direction of anisotropy that can be observed. 
Once the gauges are fitted the sample is then cast in an elastomeric resin which is then allowed to set. 
Figure 3 shows such a sample. The strain gauge leads are then connected and the sample is sealed in a 
vessel which is fluid filled and pressurised in a series of pressure steps. Because the resin used is very 
much less stiff than the rock sample, the hydrostatic load is directly transferred to the rock surface.  

 
2.3 Uniaxial testing 
Uniaxial testing is used to such an extent that it cannot be ignored. It is a subset of the triaxial test 

procedure but without either radial stress or any fluid pressure. The sample is still fitted with strain 
gauges but loading is purely axial. Because there is no confining stress the sample will fail at a lower 
stress than would otherwise be the case. Indeed the uniaxial compressive strength is an important rock 
parameter. If only a loading Young’s modulus, 𝐸1, and Poisson’s ratios, 𝑣12 and 𝑣13, are sought then 
the sample can be loaded to failure. However if the unloading modulus is also sought then a number of 
loading and unloading cycles are required. This cyclic process avoids taking the sample to failure before 
unloading occurs. Figure 4 shows the results of cyclic loading on Hawkesbury sandstone. As can be 
seen the sample displays quite non-linear behaviour. In addition the transverse strain becomes large 
with considerable permanent strain, particularly circumferential strain, as the test progresses. Such 
behaviour is quite typical of these rocks.  
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Figure 3. A hydrostatic sample fitted with rosettes and cast in silicone resin. Note the bedding of the 

phyllite sample which is at an angle to the core. 
 

 
Figure 4. Results of cyclic loading of a uniaxial specimen. The x-axis shows the axial (+ve) and 

circumferential strain (-ve) while the y-axis shows the uniaxial stress 
 

There are three forms of axial Young’s modulus that may be determined from such a test. The first 
is the tangent modulus, which is defined as the slope of the axial stress vs strain plot taken between 
loading peaks. The second is the secant modulus which is defined as the difference between the stress 
at a loading peak and the stress at the start of the loading cycle (approximately zero) divided by the 
strain change. The unloading modulus is defined as the difference between the peak load stress and the 
stress at unloading (approximately zero) divided by the strain change on unloading. The loading and 
unloading secant Young’s moduli are the same if no permanent strain occurs through the loading and 
unloading cycle.   

There are three different Poisson’s ratios corresponding to tangent, loading secant and unloading 
secant Young’s moduli. It is only possible to compare the tangent values between the three types of test 
because the hydrostatic and triaxial tests are not simple unloading tests, and the loading regime is 
complex.  

 
3. Experimental results 

Two sets of experimental results are discussed. The first is from a fine grained, laminated, silty 
sandstone. The second set of experimental results comes from a test on a medium grained sample of 
Hawkesbury sandstone that exhibited some obvious porosity.  
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3.1 A fine grained silty sandstone 
This sample from Permian strata of the Bowen Basin, Queensland, is shown in Figure 1. It is notable 

because it was first tested triaxially, then it was removed from the triaxial cell and retested uniaxially 
in a universal test machine. It was then drilled with a 26 mm hole in line with its axis and re-tested 
under uniaxial loading. Finally the central section of drilled specimen containing the strain gauges was 
cut out. This sample was then tested hydrostatically. The reason for drilling a hole in the specimen was 
to copy the geometry of an overcore stress measurement sample (Gray et al, 2013). In all cases the strain 
gauges were left in place. 

The triaxial testing included a uniaxial cycle and gas injection for poroelastic parameter 
determination. Figure 6 to Figure 8  show the results of this testing as isopachs of 𝐸1, 𝐸3 and 𝑣𝑎. Figure 
6 includes the values of axial Young’s modulus obtained from plain axial loading of the solid core. 
Figure 6 and Figure 7 contain the values of Young’s moduli 𝐸1and 𝐸3 respectively, obtained from both 
triaxial and hydrostatic test processes. The results of this have been calculated using the values of 𝑣𝑎 
from triaxial testing. This is somewhat of an artificial process as a hydrostatic test would not normally 
be conducted on a sample that had been triaxially tested. More normally a hydrostatic test would be 
conducted on a short core or a fragment with an estimate of Poisson’s ratio.  

The sample is notable because the major horizontal to vertical stiffness ratio lies in the range of 2:1 
and 3:1.  

Pressurisation of the sample with gas led to negligible strain change, indicating that the poroelastic 
parameters were essentially zero.  

The axial Young’s modulus, 𝐸1, and the average of  axial Poisson’s ratio derived from axial loading 
of the solid and hollow sample were identical within experimental error  (Figure 5). 

 
 

 

Figure 5. Comparison of  mean tangent Poisson’s ratios from a solid sample tested uniaxially in a 
triaxial cell and uniaxially in a universal test machine. Also shown is the results of re-testing in the 
universal test machine after drilling the sample with an axial 26 mm hole to represent an overcore 

sample. 
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Figure 6. Isopach of 𝐸1 with respect to axial and confining stress 

 

 

Figure 7. Isopach of 𝐸3 with respect to axial and confining stress 
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Figure 8. Isopach of 𝑣𝑎 with respect to axial and confining stress 
 

3.2 A porous sandstone 
Another sample tested was a porous Hawkesbury sandstone from the Sydney area. This sample was 

of particular interest because of the change in Young’s moduli associated with stress and because it 
exhibited significant poroelastic effects.  

Figure 9 shows the axial Young’s modulus of the sample. This varies from 4.2 GPa at low stress to 
16.2 GPa at an axial stress of 21 MPa and a confining stress of 12 MPa. The near vertical isopachs 
indicate that the axial Young’s modulus is primarily dependent on the axial stress.  

Figure 10 shows the major transverse modulus of the sample. This varies from 3.6 GPa at low stress 
to 18.4 GPa at a confining stress of 18 MPa. The near horizontal isopachs indicate that the horizontal 
Young’s modulus is dependent on confining stress. In this sample the minor horizontal Young’s 
modulus was similar to the major one.  

The Poisson’s ratio, 𝑣13, is shown for the sample in Figure 11. This shows low values of less than 
0.1 for near equal axial and confining stress. With increasing differences between these two stresses 
leading to shear stress, this value increases to nearly 0.25. Figure 13 shows this behaviour in more detail. 
It shows the value of Poisson’s ratio from the uniaxial test and triaxial test with different levels of 
confining stress respectively. The uniaxial loading case shows a tangent Poisson’s ratio that reaches 0.5 
at 17 MPa axial load. Poisson’s ratio is lower when the confining pressure is higher, which means lower 
shear stress. 

The poroelastic behaviour for effective stress in the axis of the sample is shown in Figure 12. It 
shows values of the axial poroelastic coefficient that are lowest (0.5~0.6) where axial and confining 
stress are approximately equal and increase with increasing shear stress (0.75).  
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Figure 9. Axial Young’s modulus from a porous sandstone 

 

Figure 10. Major transverse modulus from a porous sandstone  
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Figure 11. Poisson’s ratio, 𝑣13, from a porous sandstone 
 

 

Figure 12. Poroelastic coefficient in axial direction from a porous sandstone 
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Figure 13. Plot of Poisson’s ratio, 𝑣13, showing increase with shear stress 

 
4. Conclusions 

This paper has presented an approach to obtain the orthotropic elastic parameters from triaxial and 
hydrostatic loading of core and rock fragments respectively. This does not mean that the rock 
necessarily behaves in an orthotropic manner. Rather it is an improved approximation to the usual case 
where isotropic behaviour is assumed. This paper also presents a means by which the poroelastic 
behaviour of the rock may be determined within the framework of orthotropic parameters. Orthotropic 
parameters are within the range of most finite element analysis techniques while cases of fully 
anisotropic behaviour are generally not yet accommodated.  

Experimentally two sedimentary rock samples have been tested. The first is a fine grained, 
laminated, silty sandstone. This exhibits minor nonlinearity but does show a high degree of anisotropy. 
The transverse stiffness (parallel with the bedding planes) is approximately 2 to 3 times the axial 
stiffness. The sample exhibited a fairly low value of the geometric mean Poisson’s ratio that increases 
with stress. The individual values of Poisson’s ratios vary quite widely as a function of the anisotropy 
of the sample. The sample exhibited negligible poroelastic effects.  

The second set of experimental results comes from a test on a medium grained sample of porous 
Hawkesbury sandstone. It was relatively isotropic but was very nonlinearly elastic with Young’s 
modulus changes of 4.5:1 within a 20 MPa stress range. It also had a lower value of Poisson’s ratio 
except under uniaxial loading conditions. In the latter case the value of Poissons’s ratio increased 
rapidly with stress. This is quite a common feature of a number of sedimentary rocks.  

The benefits of the hydrostatic test method are many. It is simple to test quite small pieces of rock 
such as 10 mm cubes, or those of less regular geometry. Its limitation is in the need to estimate the mean 
value of Poisson’s ratio to be able to get a suitable solution. Even with this limitation the benefit of 
being able to compare the ratio of principal Young’s moduli is considerable.  
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